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The exact solution of the t~o-dimensional unsteady problem of the interaction of two one-dimensional non-self-similar Riemann 
compression waves, each of which generates an unlimited local increase in the gas density in the neighbourhood of a moving 
compressive piston, is con:~tructed. Solutions are obtained in which the adiabatic exponents and the angle at which the Riemann 
waves interact are specially arranged to be consistent. Both limited and unlimited energy expenditure on such compression is 
considered. In both cases a cumulative gas jet arises in the region of Riemann wave interference, the extent to which the gas- 
dynamic quantities accumulate being the same as for unlimited self-similar two-dimensional compression of a gas prism. Thus 
it is shown that high loca:t degrees of energy accumulation can be attained for a broad class of laws of control by unshocked 
compression. A phenomenon of partial gas collapse is observed. © 1998 Elsevier Science Ltd. All rights reserved. 

Investigations have been carded out on one-dimensional self-similar regimes of the unlimited unshocked 
compression of ideal gases contained initially inside a prism, tetrahedron or conical solid [1--6]. In 
addition to multidimensional compression, which requires the unlimited expenditure of energy, laws 
of control of one-dimensional plane compression leading to an unlimited local increase in the gas density 
with finite energy expenditure are constructed in [6]. In that case the gas flow field can be described 
by a non-self-similar simple Riemann wave• Although the entire mass of the gas does not then collapse 
totally, it is interesting to investigate the two-dimensional interaction of two one-dimensional Riemann 
compression waves at a certain angle. 

We will consider the problem of finding local degrees of cumulation of the gas dynamic quantities in 
the interference zone of these Riemann waves, and also the amount of energy expended on compres- 
sion. Although for some laws of control of compression in a one-dimensional Riemann wave the energy 
expenditure is finite, it is not obvious that the amount of energy expended in the interaction of these 
waves is finite, and this requires investigation. The question of whether a regime of unshocked compression 
exists before unlimited density is attained, if only locally in the interference zone, also needs investigation. 

The present paper discusses the solution of these problems for several classes of laws of compression 
control. The motion in zones of two-dimensional interaction is described using the classes of exact 
solutions of non-self-.similar double waves, previously used to investigate the interaction of rarefaction 
waves [7, 8]. 

1. C O N S T R U C T I O N  OF A S O L U T I O N  

Suppose that at tile initial instant of time t = 0 an ideal gas with equation of state p = p0(p/p0) v 
(p is the pressure, p is the density, P0 andp0 are the initial density and pressure of the gas, and )" is the 
adiabatic exponent) :is at rest inside the dihedral angle 13 formed by planes R10 and R20 (Fig. 1). Planes 
R10 and R20 correspond to the initial position of moveable curved compressive pistons, whose plane 
parts R1t and R2t, far from the line ODS, move in accordance with the equations 

x2 = fl (t), cos [ix 2 - sin [~x I = - f2  (t) (1.1) 

It will be assumed that the pistons start moving with zero velocity f~(0) = f~(0) = 0 and move in 
the interval t e (0, t.] with monotonelv increasinz velocities lift) > 0 and f'2(t) > 0, so that the 
• • p - 1  , - ' 1  . -  " " "  reverse functions ( f l )  = Zl a n d  (f)) = z2 exist. We take the initial velocity of sound as the 
velocity scale. Then c = Co = "/(~o0/Po) = 1. 
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Fig. 1. 

Far from the vertex of the angle in regions A and B the gas flows correspond to simple Riemann 
waves which can be described by the relations (ui(O) are the components of the velocity veetor, 
i =  1,2) 

2 2 
u l = 0 ,  u 2 = 0 - ~  0=  c (RegionA) 

y - l '  y - 1  

y+l(0 2 ) =_~_.~(2), ~f~-~ (Region B) " =-2h-t -~-;7-1)' "~ 0-  h= y-'l ~3-y 
(1.2) 

where 

U~Xl + . 2a2 -  ( - ~ 0  + UlU~ + U2.2 ) t + A i ( 0 )  =0 (1.3) 

(the prime denotes differentiation with respect to 0). The second pair of formulae (1.2) for ux and u2 
is written for the so-called "consistent case" [9], when 

t g ~ = l ( l < y < 3 )  (1.4) 

The solution of the equation of double waves in the region of interference of simple waves has a very 
simple form here. The functions A/(0) in (1.3) for regionsA and B are determined from the givenj~(t) 
in (1.1) and have the form [7] 

÷) 2 
Yi- fi(Yi), Yi = ziO,t, 0~ = 0 - - -  (1.5) 

y - I  

To describe the gas motion in the region DE1SE2, we use the equations of non-self-similar double 
waves [8] for the function 0 = 0(Ul, u2) and the "distribution" function X(ux, u2) 

Y 1 
O[(l -- Of )022 + 20102012 + (l -- 02 )Oil ] + 

2 

: o  
~u~Ouk 

(1-Of)X22 +20102X12 +(1-02)g l l  =0, g/k = 02X Oui~uk 

x i=(ui+Y-12 OOi) t+Xi' i , k= l , 2  

(1.6) 

(1.7) 

(1.8) 
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Once the functions 0 and X have been found, formulae (1.8) implicitly define the gas velocity field 
in physical variables xl, x2, t. 

For the consistent case (1.4), the solution of Eq. (1.6) in the region DE1SE2 has the form 

2 
0 = + ulh + u 2 (1.9) 

y - 1  

and we write the general solution of Eq. (1.7) for X in the form 

X=WI(Ul)+%(Ul +8U2), 8=  q(T + D(3-  y) 
¥ - 1  

(1.10) 

where tF 1 and ~I't2 a r e  arbitrary functions of their arguments. Their derivatives can be expressed in terms 
of given.~(t) [7] as follows: 

~;(~) = -~{(I + h~)z2 0 ~ )  - f 2 t z ~ ( ~ ) ] } ,  
2 

x = ~ (1.11) 
(y - I)8 

1 I + T + I  rl 11 11 

Formulae (1.2)-(1.5) and (1.9)-(1.11) give the complete exact solution of the problem if the conditions 
for relations (1.3) and (1.8) to be solvable are satisfied. The velocity field is determined from these formulae. 

Using (1.8) and (1.10) we can represent the Jacobian in the form 

1 = - - ~ - t  m 
D(Ul,U2) 3_-'~ + tFI(~) + (T_ i)2 V~'01)) (1.12) 

It follows at once :from (1.3), (1.5) and (1.9)--(1.11) that if the expression in one of the brackets of 
the Jacobian J vanishes, a gradient catastrophe occurs in one of the Riemann waves in region A or B. 
Thus, if a gradient catastrophe has not occurred in A and B by some particular time, it will not have 
occurred before then in the region of the double wave either, that is, the conditions for the implicit 
equations (1.8) to be solvable are satisfied. 

2. T H E  S Y M M E T R I C  CASE 

For arbitrary laws of motion of the pistons Rit which lead to an unlimited increase in the gas density, 
considerable difficult~ies arise when investigating the degrees of cumulation of the gas dynamic quantities 
and energy expendi'ture. We will therefore confine ourselves below to the symmetric motion of 
compressive pistons, where the functionsfi(t) have the form 

A (t) = fz (t) = B~ + B2t + B3 (t. - t) ~, a < 1 (2.1) 
r, r,~ r, 

BI = 1 - - ~ '  B2 = t,(1-Ot---'~ <0, B 3 = t,~(l_a---~) < 0  

The constants Bk are determined from the conditions 

fl (0) = 0, fl'(0) = 0, fl (t,) = r, 

where the parameters r, and t, determine the place and time at which the infinite velocities and densities, 
which increase by a power law, occur. 

The laws of motion of a piston for this case were considered in [6], where it was shown that provided 
that 

2y 
< a < 1 (2 .2)  

3 y - 1  
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the energy that needed to be expended on the displacement of a plane piston to reach an infinite density 
is finite. As ~ --> 0 (x = t, - t) the degree of cumulation n of the velocity of sound (c = O(x-~)) on the 
piston is equal to 1 - tx. 

If ct = 2/()' + 1), t, = r. = 1, formulae (2.1) give the law of control of the compression, when in the 
self-similar mode a plane layer of unit thickness entirely collapses at a time t = 1 [10]. Certainly, this 
requires infinite energy loss. 

In regionA (1.3) becomes 

x 2 - r . + ( t , - t ) ( ~ ' ~ u 2 + l ) - t , [ ~ - ~ B 2 + l  - 

I (1 , _ B  2 _ + ) ' + 1  1 -  1 -  = 0  (2.3) 
2 

Using (2.3) express C[,$2/~U2 and O2x2/Ou 2 and analysing the resulting representation, we obtain a 
constraint on the parameters t., r,, )' and ¢t which must be satisfied for gradient catastrophe not to occur 
in A and B before a time t = t. 

t . ~  > r, ot, ot>)'+------~ ) '+1 3 y - 1  

As t ---> t.(u 2 ----> ~)  a gradient catastrophe occurs on the piston. 
In the region of the double wave we convert relations (1.8) to the form 

where 

X I = X I (Ul ,  u 2)t  + ~F{(u I ) + W~(u I + 8u 2) 

x2 = X2 (ul, u2)t + 8't'~ (ul + 8us)  

X l ( u l , u 2 ) = h +  ) ' 2 -2 ) '  +5 ) ' - I  hu 2 
2(3- ) ' )  u~+ 2 

X e (u I , u 2 ) = 1 + )' 2 - 1 hu I + ~ .  us 

(2.4) 

I 

~FI'(~) = al + bl~ + (Pl + ql~)( 1 + sl~) a- I  
I 

~ ( ~ )  = a2 + b2~ + (P2 + q2rl)( 1 + s2rl) a-l (2.5) 

1 
al = -Pl = -x ( t ,  - r , ) ,  a2 = - P 2  = - ~ ( t ,  - r , )  

2t. ()' - 1)2t. 
b I = -  ~ b 2 = 

3 - ) ' '  2 (3- ) ' )  

s l= - -E-x>0 ,  s 2 = - ~ B 2 > 0  

ql = -bl 1 IX()' + 1) ' q2 = -b2 1 ot(T'+ 1)' 

The lines between the double wave and the regions of simple waves E1S and E2S at each instant of 
time are straight. In fact, putting ul = 0 in (2.4), we obtain the following equation of motion of the 
characteristic EIS  
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2 
x2 - 8xt  = - t -  6 V ( ( 0 )  

y - 1  

In order to find the law of motion F(Xl,  X2, t) ---- 0 of a mobile curvilinear piston DE1 for a velocity field 
given by (2.4), we must solve the first-order equation 

Fxtu I + F~2u 2 + F t = 0 (2.6) 

This equation corresponds to the condition that the piston is impermeable, and its boundary condition 
defines the known law of motion of the point E1 in a simple Riemann wave. However, the equations 
for characteristics (2.6), which have the form 

dx I dx  2 
all = Ul(Zl ' x 2 ' t ) '  dt = u2 ( X l ' X 2 ' t )  (2 .7)  

where ul and u2 are determined implicitly from (2.4), cannot be integrated in quadratures. Moreover, 
the law of motion of the piston DE1 cannot be found, even in the limit (as t ---> t.), even though for large 
I Ul I and I u21 the velocity field is self-similar in the neighbourhood of the cusp D. 

In fact, for large ~ and rl in (2.5) *F~(g) and ~F[(~) are linear functions, formulae (2.4) asymptotically become 

~1 = xl - h r .  _- Xi (u i ,u2) ,  ~2 -- X2 - r ,  _- X2(Ul,U2 ) (2.8) 
t - t ,  t - l ,  

where ~ are self-simil,~ variables. 
It is simple to integrate Eqs (2.7) with Uk from (2.8), but this does not yield the law of motion of the piston DE1, 

because ul = 0 on the carve next to the simple wave in zoneA and the argument about self-similarity is only justified 
near the cusp D. 

Using relations (24),  we can reduce the system of equations (2.7) to the form 

du I du 2 
-dt = Gl(Ul 'U2' t ) '  dt = G2(Ul 'U2' t)  (2 .9)  

where the functions G1 and G2 are expressed explicitly using (2.5). However, system (2.9) cannot be 
integrated analytically either. The domain of definition of the flow in the plane of the hodograph of 
velocities ul, u2 will depend on t. The evolution of this domain for different t is shown at a qualitative 
level in Fig. 2. As t --o t. the domain of definition of the double wave corresponds to the sector bounded 
on the left and below by the lines ON and OM, which correspond to simple Riemann wavesA and B. 

Of  course, the formula of piston DE can be found numerically by integrating the equation of 
characteristics (2.7) covering the piston surface F(Xl, x2, t) = 0, on the composite velocity field t --> t,, 
determined from relations (1.2) and (1.3) for simple waves, and (2.4) for a double wave. The initial 

N ¢/g 
t ,  

0 IA/ 

Fig. 2. 
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conditions for the numerical integration are determined by specifying the initial shape of the moving 
piston, the line R10. 

Despite the difficulties that are encountered in finding the shape of the piston D E  analytically, the 
trajectory of motion of the point D and laws of variations of the velocity and density at it can be found 
exactly for all t e [0, t.]. Thus the local degrees of cumulation of the gas-dynamic quantities in the 
neighbourhood of the point D as ul, u2 can be found analytically. 

Along the bisector OS: xl = hx2, on which ul = hu2, from (2.4) we obtain an ordinary differential 
equation from which we can find x l (x )  (x = t. - t) 

x I (x)  = h(r. - x)+ h2xx~(x) - h(r. - t. - rqx~(x)) x 

1 

-1, = 2"'if' q = 2 - a ( y + l )  (2.10) × 1 , 2 ( 1 - a )  x~(x) r t.× 

with the initial condition 

x I (t.) = 0 

It follows at once from (2.10) thatx~(t.) -- 0. 
Equation (2.10) is a Lagrange equation and is integrated in quadratures. Putting -x~( t . )  = b(x), we 

can find the velocity b(z )  ~ [0, .o) at the point D from the equation 

2-11 

s = 2 t---* - a ( y + l )  
r. 

Integrating Eq. (2.11), we obtain a relation which implicitly determines the value of the velocity b(x)  
at the point D 

y+l 

-,~ = (l + ~b)-2(y-l) G (2.12) 

b 

G -- - t .  + r S 
0 

2-a 3-y 

s - ~ - x  l + 2 ( l - a )  r a-I 2 - - x  1+ x dr 

From (2.11) we can find the degree of cumulation of the velocity b (and therefore of the velocity of 
sound c from (1.9)) for small x. For a > 2/(y + 1) in (2.11), the constant q > 0 and db/dt  > 0 for all t 

(0, t.]. Thus, the point D moves with a velocity b I> 0 which increases from zero to infinity. For large 
b the integral in (2.12) for a > 1/h z converges, that is, for a > 2/(T + 1), b = ** it has a finite value. 

If the quantity G in (2.12) does not tend to zero as b ~ **, it follows from (2.12) that the asymptotic 
law of the increase of the velocity of the gas and the velocity of sound c as x ~ 0 has the form 

-2Y- I 

(2.13) 

Thus, the degree of cumulation of the velocity (and the velocity of sound) at the point D is independent 
of the quantity a and is equal to the degree of cumulation of the velocity during unlimited self-similar 
compression of a prism [1]. 
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An analysing the wflue of the improper integral in the expression for G when b = ~ is a lengthy 
procedure. It can be shown to be strictly less than t. at least in some range of variation of the parameters 

% t. and r.. 

3. E N E R G Y  ESTIMATES 

We will investigate the energy E(t) expended in moving the pistons Rlt and R2t up to time t, in the 
case when the index o: satisfies inequality (2.2). Although for plane motion the energy expenditure per 
unit length is finite iZL case (2.2), estimating the energy in the region of interference of simple waves 
(will it be finite?) is a non-trivial problem. 

We cannot directly use an integral expression of the form 
t, 

E(t) = 2J" [PDe,(,)u.dldt 
0 DEl(t ) 

where PD~O) is the pressure on the piston DEt(t), Un is the normal velocity of the piston motion and 
dl is an element of length of arc of the piston because, as we have already noted, the law of the piston 
motion DEI(t) has not been found in analytic form. On the other hand, the work of the pistons Ru and 
R2t goes on increasing the internal and kinetic energy of the gas in region DE1SE 2. Thus if we study 
the final state of the gas at time t = t. and the limiting shape of the piston DEI(t), we can then try to 
estimate the total energy E(t,) by a direct estimate of the internal energy e(t.) and the kinetic energy 
r(t.). 

As t --> t., from representations (2.4), Eqs (2.5) and the fact that although Ul and u2 both increase 
without limit, the estimate (2.13) is valid, we first obtain the following asymptotic forms 

1 I 

Xl ~= Xlf + (P2 + q21])( 1 + S211) a-I , Xlf = hr, + (Pl + ql~)( I + sl~)a-I (3.1) 

1 

x2 = x2f  + 8 ( p 2  + q21] ) (1  + s 2 1 ] ) a - I ,  x 2 1  = r,  

On piston DEI as t ~ t. the quantity ~ = Ux varies from zero to infinity, and q = ul + ~ 2  is unbounded. 
Thus in the final state the shape of the piston DEI(t.) can be represented paramefrically as Xl = xl/, x2 
= x~  that is, at time t = t. the piston DE 1 becomes the rectilinear segment D.E r (Fig. 1) 

x I ~[hr,,hr, +Pl], x 2 =r, 

The parallelogram D.Et.S.E2. corresponds to the final region of a non-self-similar double wave. 
The velocity distribution in the neighbourhood of the point D. can be found from the asymptotic 

formulae which follow from (3.1) for large ~ and 1] 

et ot ct 

x I -- hr, = m l ~  a - I  + m 2 " q a - I  , X 2 -- r ,  = n21] a : l  

1 I 

m l=qls~  t-I >0,  m 2=q2s~ -1 >0, n 2 = 8 m  2 > 0  

(3.2) 

It follows from (3.2) that 

a - I  a - I  

El = (x! - ~-Ix 2 - ~r, ) m -l , ~2 = (x2 - r,) n[ 1 

In the region D,ErS,E2, we have ~1 ~> 0. From (1.9) we then obtain 

a - i  a - I  
e= 2 C(to)= 2_2._.+x~]. +_~t~2- ~- 

¥ - 1  ¥ - 1  
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Both the internal energy e(t) and the kinetic energyK(t.) for internal points of the reaion D.ErSE2. 
are proportional to the double integral over that region of c(2V/r-1)(t., Xl, x2). We reduce t-he problem of 
estimating the energy to an investigation of the convergence of the improper integral 

2¥ 

J = ~1 
00 

where % and ~t are certain positive constants. The quantity J is majorized by the integral 

2"1 . .  27(oc- 1) 
J0 = (3 max ~ ,  )v-l [ [ (1 + ~ + ~ )  agld~2 , g = 

o o OC(T - 1) 

Since g + 1 > 0 if inequality (2.2) is satisfied, we have J0 < ~. 
In order to estimate the total energy losses E(t.) before the final state is reached, we also need to 

calculate the mass balance. In fact, the final part of the original mass of gas can, in principle, collapse 
at time t. to the point D.  and along lines D.EI., D.E2.. Thus, we need to check that 

M 0  -- 2Ml + M2 

Ml= H Pl(Xl,X2,t*)dxldX2, M2= SJ P2(Xl,X2,t*)dxldX2 
e~.~.s. O.E,.S.e~. 

(3.3) 

where/140 = hp0t 2 is the total mass of the compressed volume of gas, pl(Xl, x2, t.) for a simple wave is 
found from (1.2) and (2.3), and p2(Xl, x2, t.) for a double wave from (1.9) and (2.4). If relation (3.3) 
is an identity, it follows from the relation J0 < '~ that the total energy losses are finite. If M0 is greater 
than the right-hand side of Eq. (3,3), during the compression process part of the mass collapses at time 
t. and is concentrated along the lines D.EI., D.E2.. 

The quantities Pl and P2 are found implicitly from those equations, and the integrals in (3.3) in the 
Xl, x2 plane cannot be evaluated exactly. It is better to change in (3.3) to variables of the hodograph 
plane ul, u2 for t = t.. 

The calculation of.the Jacobian J (1.12) for t = t. leads to the representation 

Then we obtain 

2-ct 2-or 
j .  = ( y +  1)(3-  y) 

(T_ 1)2 (1 + Sl~)a-I (1 + S2TI) ct-I (fl + gl~)(f2 +gEl]) 

fk = qk + skpk (lX--1) -I, gk = qkskOt(Ot--1) -I, k = l , 2  

= Ul , 11=U I + ~U 2 

2 2 

M2 =2Po( '~)~-I idu21!2J*l  2--i +hUl+U21"Y---"ldul 

(3.4) 

(3.5) 

The quantity Pl in (3.3) is independent ofx 1. Thus, after changing to the integration variable u2 using 
(2.3) we obtain 

2 1 

X(lo+l, u2)[ho+hl(l-U-L2 ~--~+h2(l-UZ ~---~ ]du2 (3.6) S2) & ;  j 

where the constants hk, lk depend on r., t., T, a. The expressions for these constants are cumbersome 
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and will not be give~t here. For any oc and T the integrals in (3.5) and (3.6) can be found numerically. 
Exact (very lengthy) analytic calculations have been carded out for cx = 6/7, y = 5/3, t. = 1, r. = 1/2, 
when condition (2.2) is satisfied. It turns out that the mass balance (3.3) is not satisfied.f Analytic 
calculations with these parameter values show that 

m (:: 1 M0=P0"V~, M i = P o X f 2 ~ ,  M2=P0-Cr2 + m 3 1 n 3  
gIl g/3 

where ink, n k are integers. The presence of In 3 in the expression for M2 proves the imbalance. When 
r. = 1/2 we obtain 2/dl ~ 0.471; ME ~ 0.891; 2M 1 + M 2 < M0. As r, increases, the imbalance increases 
rapidly. 

We have thus discxwered that partial collapse occurs during non-self-similar compression of this type. 
It is interesting to track the dynamics of point masses which lie on the bisector OS,, all of which collapse 

to the point D.. It turns out that this can be done exactly using Eq. (2.10), which describes the trajectories 
of particles moving along OS.. 

Suppose that at time t = to a weak discontinuity/'to has reached the point Do on the bisector, and 
the mass particle which is situated at the point Do at rest before t ~ to starts to move. Its trajectory can 
be described by the equation (the analogue of (2.12)) 

¥+1 

- x =  l + ~ b  G O , G o = t o + G  (3.7) 

The greatest time t$, when the trajectory of the corresponding point mass, which at some point Do* 
was on the bisector at t = t$, arrives at the point D. at time t., is given by the equation 

t o = , , - r ~  R(x)dx  (3.8) 
0 

where R(x) is the same as the integrand of (2.12). Representation (3.8) is obtained from the condition 
G0~<0. 

Thus, all the points on the bisector OS. to the left of the point Do collapse to the point D.. 
The description of the configuration of the entire initial sub-region of the prism with section OM.S.N.,  

which contracts into segments DOE1. and D,E 2 ,  , can be obtained by numerical integration of the system 
of equations (2.9) u,;ing high-accuracy algorithms. 

Thus, the energy expended in moving compressive pistons in the region of a double wave is infinite, 
although it is finite in regions of Riemann waves. 
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